
DNS Data Exfiltration

Using SQL Injection

Bob Ricks

G2, Inc.

SQL Injection

• We assume knowledge of how it
works

• Basic types of data exfiltration

• Verbose
• Displayed on page

• Error based

• Blind
• Timing

• HTTP Request

• Change in page

• DNS Exfiltration

Related Work on DNS

Exfiltration

• http://pentestmonkey.net/blog/m

ssql-dns/

• David Litchfield: The Oracle

Hacker's Handbook: Hacking

and Defending Oracle

• Squeeza

(http://www.sensepost.com/rese

arch/squeeza/dc-15-

Attacking Oracle

• Because it’s there, and out there

• Most of the DNS Exfiltration tools

attack MS-SQL Server

• Until Oracle 11g, access to

UTL_INADDR defaulted to on and

unprotected. Access to UTL_HTTP

defaults to on, but Oracle

recommends turning it off unless

needed.

Why we are here

• DNS is Usually available

• HTTP connections should be blocked

• There is usually a DNS path available

• Even if the database has no outbound comms

• DNS server for DMZ will probably forward requests

• Speed

• Timing/change in page extract ~1 bit per

injection

• Completeness

• Non-standard table and column names

• Data types

What we built

• Tool to exfiltrate arbitrary data from

Oracle

• Automatically generates injection

strings

• Receives and processes DNS queries

• Asks for additional information

based on responses from the

database

Our Design

• Submit a number of queries in each
round

• We know from the position in the DNS
request which subquery each field
matches

• Can configure how many subqueries
and maximum length of each return
value

• Random characters plus query
number

• Use a short domain name, xg2.us

• e.g. 0414243.DATABASE.sal0.xg2.us

What we learned

• DNS Restrictions

• Total size 248 characters,

including overhead

• Require use of entire domain, own

domain name

• Each field needs to be 1-63

characters

• Each subquery must return 1 column

and 1 row

How we process data

types

• RAW

• Uses approximately twice as many

characters

• Nothing has to be changed, all chars

valid

• Character strings

• Good if all characters and numbers

• Need conversion if there are spaces

• Marker to determine if truncated

• Numbers

Tool used on HR

Schema
• Standard HR

Schema

• Time 5 min, ALL

data

Displaying Schema

User: HR

Attributes:

 authentication => DATABASE

 username => HR

 web_server_internal_ip => 127.0.0.1

 language => AMERICAN_AMERICA.WE8MSWIN1252

 database_ip => 192.168.10.93

 lang => US

 web_host => hawker

8 Tables

 Table: "USERS" has 2 columns and approximately 1 rows

 Column: "USERNAME" (VARCHAR2)

 Column: "PASSWORD" (VARCHAR2)

 Table: "COUNTRIES" has 3 columns and approximately 25 rows

 Column: "COUNTRY_ID" (CHAR)

 Column: "COUNTRY_NAME" (VARCHAR2)

 Column: "REGION_ID" (NUMBER)

 Table: "EMPLOYEES" has 11 columns and approximately 107 rows

 Column: "EMPLOYEE_ID" (NUMBER)

 Column: "FIRST_NAME" (VARCHAR2)

 Column: "LAST_NAME" (VARCHAR2)

 Column: "EMAIL" (VARCHAR2)

 Column: "PHONE_NUMBER" (VARCHAR2)

 Column: "HIRE_DATE" (DATE)

 Column: "JOB_ID" (VARCHAR2)

 Column: "SALARY" (NUMBER)

 Column: "COMMISSION_PCT" (NUMBER)

 Column: "MANAGER_ID" (NUMBER)

 Column: "DEPARTMENT_ID" (NUMBER)

… (4 More Tables)

Absinthe on same DB

• Graph shows

• Initialization

• Schema Name

• Table names

• 5 Took minutes

• Our tool got

basically all

this in 6

seconds

COUNTRIES

• Absinthe is

getting column

names, data

types, etc.

• Took about 5

minutes

• Much higher

CPU utilization

on

Table: “USERS”

"USERNAME","PASSWORD"

"admin","password"

"bob",";alfkjsdj023jr;oajsdc890asfdja023j“

Another example

"USERNAME","PASSWORD"

"Iamgettingtiredofcomingupwithfakeusernamesandpasswords","Thisisjustpainfu

ltohavetokeepdoingthisajf0923ja09a0fj[a}{F03927"

Wireshark

What the tool does not

do

• Find SQL injection sites for you

• Does not process “long” data

type because you cannot use

functions on it

• Extensive use of the following

functions

• LENGTH()

• SUBSTR()

• UTL RAW cast to raw()

Future Work

• Retry queries/fields that failed

• Create GUI front end

• Would work well on a web server

since we could have the web

server control a domain

• Specify target, parameters,

cookies

• Harden tool

Prevention

• Revoke priveleges on UTL_INADDR

to Oracle user used by web pages

• No outgoing DNS requests from DMZ

• Fix SQL injection sites

• There are no good fixes for bad

programming

• Always check ALL input from “users”

• Strings, passwords, cookies

• Double-check login information

Summary

• SQL Injection is bad news (in a

good way)

• DNS exfiltration can be very

effective

• DBAs should block DNS for web

users

• Web programmers should guard

against SQL injection

• Parameterized SQL

Extra Slides

• String strategy

• Additional data tables

• Stress nonstandard table names

• File names are URL Encoded

• Varying data types

String Strategy

• If possible and starts with

non-’0’ pull as is

• If necessary convert to ‘0’ plus

raw (hex)

• Ask for substring of allowable

length

• If return is maximum length

• Ask for length

Table: EMPTY
"BLANK","EMPTY","NONE","NIL"

Table: COMMENTS

• "NAME","COMMENTS","KEY"

• "null","comments",41

• "null",,25

• "null","70.17.254.77",27

• "null","127.0.0.1",28

• "null",,26

• "null","172.16.1.102",29

• "null",,30

• "null","127.0.0.1",12345678901234568790

• "null","70.17.254.75",36

• "null","209.35.68.205",37

• "null","64.236.91.24",39

• "null","why isn't the terminal working?",42

Table: “Valid Table

Name”
"Valid $ Column","Weird@@@"

"39 digits",123456789012345678901234567890123456789

"really 39
digits",123456789012345678901234567890123456789

"40 digits",1234567890123456789012345678901234567890

"42
digits",12345678901234567890123456789012345678900
0

"42 digits round
up",123456789012345678901234567890123456789100

"null",

Table: “VALID ``$@!()%$``

TABLE NAME”

"THAT`S ALL FOLKS","TRY ``THIS`` ON FOR

SIZE ***","Let`s Try Precision/No Scale--

","bang"

"first line",99,1234567,0

